Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472816

RESUMO

Plasma-activated water (PAW) treatment is an effective technique for the quality retention of fresh vegetables with cold atmospheric plasma using controllable parameters. This study investigated the effect of PAW on the postharvest quality of shepherd's purse (Capsella bursa-pastoris). The results displayed that PAW treatment with an activation time of 5, 10, 15, and 20 min reduced the yellowing rate and weight loss of the shepherd's purse during 9 days of storage. Compared with untreated samples, PAW treatment at different times reduced the number of total bacteria, coliform, yeast, and mold by 0.18-0.94, 0.59-0.97, 0.90-1.18, and 1.03-1.17 Log CFU/g after 9 days of storage, respectively. Additionally, the treatments with PAW-5 and PAW-10 better preserved ascorbic acid, chlorophyll, total phenol, and total flavonoid contents. They also maintained the higher antioxidant and CAT activity and inhibited the formation of terpenes, alcohols, and nitrogen oxide compounds of the shepherd's purse at the end of storage. The microstructural result illustrated that the cells of the shepherd's purse treated with PAW-5 and PAW-10 were relatively intact, with a small intercellular space after storage. This study demonstrated that PAW treatment effectively improved the postharvest quality of shepherd's purse.

2.
Ultrason Sonochem ; 98: 106517, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454538

RESUMO

In this study, a decontamination technology combining ultrasound (US) and plasma-activated water (PAW) was developed to better preserve crayfish. First, the decontamination efficacy of US, PAW and their combinations (UP) on crayfish was quantified after 0, 20, 40, or 60 min of treatments. The total viable count (TVC) was reduced by 0.27-0.77 Log CFU/g after individual US or PAW treatments, while a TVC reduction of 1.17 Log CFU/g was achieved after 40 min of UP treatment. Besides, the changes in psychrotrophic bacteria, lactic acid bacteria, yeasts and molds followed a similar trend to TVC. UP treatments normally resulted in more significant reductions in the natural microbiota of crayfish than US or PAW treatments. Furthermore, the microbial quality, physicochemical properties and sensory properties of crayfish after different treatments were assessed during storage at 4 °C for 12 days. According to TVC and total volatile basic nitrogen (TVB-N) values, the control group became unacceptable from 4 days, US or PAW groups became unacceptable from 6 days, while UP group extended the storage time to 8-10 days. During storage, thiobarbituric acid reactive substances (TBARS) values of all the groups were maintained below 0.5 mg/kg, among which the control group exhibited the highest value (0.39 mg/kg). Moreover, UP treatment effectively retarded the deterioration in color and texture properties of crayfish. Fourier transform infrared (FTIR) spectroscopy analysis indicated that UP treatment decreased the α-helix contents and increased the ß-sheet contents of crayfish proteins, while the structural changes were not evident at the end of storage. Low-field nuclear magnetic resonance (LF-NMR) analysis revealed that UP treatment reduced the water migration and enhanced the stability of bond water in crayfish. In addition, E-nose analysis revealed the protection of UP treatment on the sensory properties of crayfish during storage. This study demonstrated that the combinations of US and PAW treatments effectively accelerated the decontamination of crayfish and contributed to better storage quality.


Assuntos
Astacoidea , Água , Animais , Viabilidade Microbiana , Contagem de Colônia Microbiana , Alimentos Marinhos
3.
Ultrason Sonochem ; 92: 106259, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502681

RESUMO

To improve the quality of cooked and frozen crayfish after repeated freeze-thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze-thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 µm2 and 113.73 µm2, and average diameter of the ice crystals was 5.83 µm and 8.14 µm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..


Assuntos
Astacoidea , Gelo , Animais , Congelamento , Proteínas , Água/química , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...